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ABSTRACT

This report describes a parametric study of stiffened cones and cylin-

ders to analytically determine the effects of a longitudinal steady

state driving force on the radial velocity of axially symmetric shells.

The "lumped-mass" technique is utilized to predict the natural fre-

quencies, mode shapes and impedances (point and transfer) for eight

cases. Although the natural frequencies are not too sensitive to

changes in shell thickness and frame area, the transfer impedances

(hence radial velocities) vary significantly for the cases studied.
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NOMENCLATURE

mj lumped mass at joint j

D deflection at joint j

S stiffness of each member (p)p

A area of member (p)

E Young's Modulus

SPoisson's ratio

Alength of member (p)

Ix,Iy moments of inertia of member (p)

J polar moment of inertia of member (p)

KxYKy shear distribution factors

TJoint (J) restraint factor

x,y coordinates normal to longitudinal axis

z longitudinal coordinate

x , yl,zl skewed coordinate systems for member (p)

t time in seconds

0eigenvalues

(P eigenvectors

f natural frequency (f cycles per second).
2r

M generalized mass
2

g gravitational constant (386.4 in/se C



INTRODUCTION

The coupling of shell modes is defined as the interaction of the

shell's stretching modes and the shell's lobar modes in a vibrating

shell. This interaction affects the sound radiation from the shells

when they are subjected to steady state driving forces. Thus, a

cylinder being driven along its axis not only creates sound pressure

in the direction of the force but also in the radial direction. In

this report, the mechanical coupling of the modes is investigated

but not the resulting sound radiation.

Lobar frequencies of shells are usually calculated separately from

the stretching frequencies for the sake of simplifying the calcula-

tions. But to determine the true interaction between the two, they

must be considered simultaneously. To facilitate the latter, a

computer program was developed [ 1, 2, 3, & 4* that can calculate

the frequencies, mode shapes, and mechanical impedances of a shell

of any (arbitrary) geometry. The technique used is commonly called

the "lumped-mass" method. By this is meant that structural systems,

in this case stiffened cylinders and cones, are idealized as a grid-

work of plates and beams whose masses are concentrated at their

respective centers of gravities. In the case of a stiffened cylinder,

the gridwork consists of a series of flat plates (Fig. 1) related by

direction cosines to form the shell, and straight beam members, also

related by direction cosines, to form the stiffeners. Continuity

and equilibrium are satisfied at the joints between members. Thus

the stiffness (and flexibility) of the entire structure can be

determined, and having established the mass distribution, the equations

of motions can be written and solved to determine natural frequencies

and mode shapes. The point and transfer impedances can then be

determined.

* Refers to references (pg 18)
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I

In this study, the objective is to determine the natural frequencies,

mode shapes, and impedances of two basic shells of revolution:

cylinders and cones. After choosing the diameters and lengths,

several combinations of shell thicknesses and stiffener areas were

considered. The results indicate to what extent frame size and shell

thickness influence the vibrational behavior of cylinders and cones,

which in turn influences the nature and strength of the sound radia-

tion from these shells. Ultimately, a thorough knowledge of the

effects of the shell and stiffener geometry on the vibration and

radiation characteristics can lead to structures with minimal adverse

behavior.

6



THEORETICAL DEVELOPMENT

The initial operation in analyzing stiffened shells (Fig. la) by the

lumped mass technique is to idealize the shell and stiffeners by a

system of flat plates and bars (Fig. lb). Hrennikoff[5]has shown

that the flexibility of this system can be duplicated by using a

mathematically equivalent framework of elastic bars (Fig. 1c). This

equivalent framework is then used as the mathematical model for the

structure.

Each member of the framework has typical beam properties, but these

properties are mathematical equivalents only, and do not have direct

physical meaning. A typical cross section and plan view of an

unstiffened shell are shown in Figs. 2a and 2b.

The properties of the members in these panels are:

A 3 [3K2 -1] at ixo= [Aot cos 2 
a

3 I- at Iyo A.- sin 2 a
8 yo 1
A [(_ + K)/2l

A- 3  K at Ixl= A
16 L l 12

t2

1x2= A--12

The addition of a stiffener (Figs. 3a and 3b) contributes to the

stiffness of the circumferential frames.

The only properties which change are A. and I

Als= A,+ A(frame )
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rJ

Ixls I xl + Ix(frame)

lI = ly(frame)

Since the amount of damping inherent to thin shells is very small

compared with the value for critical damping, the effects on the

natural frequencies and mode shapes are negligible. Thus, the only

parameters needed to determine the natural frequencies are the

structural geometry, mass distribution and end conditions, which are

all determined in establishing the equivalent gridwork of elastic

beams.

The equations of motion for free vibrations are:

n
mj Dj + S Di  =0 (1)i~l S j

where j is the joint number.

Each Joint (J) is common to two or more members (p), and the joint

stiffness (Sjj) is comprised of the sum of the stiffnesses of each

member (S p). The stiffness of each member at the centroid of the
!p

member is:

. o
Ia I (1.1)

p a 6

where
AE

a' T

a.9 = 12 EIxA/ [VSA + 24(1 + )KxLIx)

a 3 = 12 EIyA/ [3A + 24(1 +i± )Ky Iy)]
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a.4 - Ja/(l -

a,,, El y/,

Before the stiffnesses of each member (S ) a±'e summed to get the

joint stiffness (Sjj), each member's stiffness is rotated and trans-

lated from its own coordinate system to the coordinate system of a

common origin.

Thust

S 0 - LTBSpB TL (1.2)

L [ (1.3)

cosx x cosx y cosix z

2 cosyz x cosyz y coszl z
1 1

0 1

B o 0 1 (1.4)
B,,

o (Zp-Zo) (Yo-Yp) 1

( -p ) 0 (Xp-Xo) 0 1

( YpY ) (xO -xp) 0 0 0

Once the stiffnesses of all the Joints are calculated at the origin,
n

they can be used to form the stiffness matrix and the il ji Di

matrix in the equation of motion.

n n

iz kS 0~ (2)
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Thus, in( Fig. 4

[I + s02+ s] -S o - - D
n [S?+ S" + SO s o  2

i=l 1 +S° + soJ 4)

1-- --- etc.---_--[f Z

Or, in matrix form

n

z So D°  S DO (2.2)~ii i iiZ

where SO is the n x n stiffness matrix at the origin

and EP is the n x 1 deflection vector at the origin

Before the natural frequencies of the system are calculated, the

stiffness matrix at the origin (SO) is inverted to form an influence

coefficient matrix (50).

[ So]l, = 5.(2.3)

The influence matrix forms the characteristic matrix and is transferred

back to the initial coordinate system at the joints.

5 - BTLTFT5,LBF (2.4)

F is a force matrix with unit forces at each mass for each degree of

freedom.

The equations of motion then can be written in terms of the influence

coefficient matrix:

D - M D (3)
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where:

D is the displacement vector (6n x 1)

D is the acceleration vector (6n x 1)

5 is the flexibility matrix (6n x 6n)

M is the diagonal mass matrix (6n x 6n)

The natural frequencies can be determined by assuming a peroidic

displacement

D = Tsinmt (3.1)

and inserting into equation (3) to get the frequency equation:

2.1 -5M 0(4)

A more expedient form of equation (4) is obtained if the mass matrix

is factored so that:

M T (4.1)

where:

17 --o-

= w . l(4.2)Lii
0 -Vmn]

Premultiplying equation (4) by X and using (4.1) results in:

a? I
?,5T 0 o (5)
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Since X§) T is a symmetrical matrix, computer storage for only half

of the non-diagonal terms is required.

The solution of equation (5) is accomplished by using the Modified

Givens Method [6] to determine the eigenvalues (w) and eigen-

vectors (e). Due to the operation whereby X6X T is used, the eigen-

vectors are not the true ones, but are reorientated. The true eigen-

vectors are then obtained by:

-1 e (6)

The equation for the undamped transfer and point impedances, using

the eigenvalues (w) and eigenvectors (T) of the stiffened shell, is

z (7)Zjk = 1g n W jPk w

r-l cn-n 2

,where j = k for point impedance.

t 12



III

DESCRIPTION OF MATHEMATICAL MODELS

Eight models were analyzed, four cones and four cylinders (Fig. 5).

For all cases, the end conditions were the same; zero radial deflection,

zero longitudinal slope and free longitudinally at the end with the

steady state driving force (Feint). The length and diameter of the

cylinder were held constant, and the shell thickness and area of

frames were varied. Similarly, in the cone the length and diameter

were held constant and the shell thickness and areas of frames were

varied.

Since four cases were studied for each the cone and cylinder, six

comparisons can be made for each geometry (Table 1). In both the

cone and cylinder, two shell thicknesses and two areas of frame were

considered. Therefore, the cases to be compared are:

3.1 Comparisons TABLE I

a. Doubling the frame area (1 in to 2 in2 ) while keeping shell

thickness constant (1/4 in ).

b. Doubling the frame area (1 in2 to 2 in2 ) while keeping shell

thickness constant (1/2 in).

c. Doubling the shell thickness (1/4 in to 1/2 in) while keeping

the frame area constant (1 in 2 ).

d. Doubling the shell thickness (1/4 in to 1/2 in) while keeping

the frame area constant (2 in2 ).

e. Doubling both the shell thickness (1/4 in to 1/2 in) and

frame area (1 in' to 2 in2 ).

f. Doubling the shell thickness (1/4 in to 1/2 in) while halving

the frame area (2 in2 to 1 in ).

13



IV

RESULTS

The most significant variations in results for the cases of cones and

cylinders were in the impedances (point and transfer). The transfer

impedances are the most important to this study, since they determine

the longitudinal steady state driving force required to impart a unit

velocity to either the shell plating or frames in a radial direction.

For each of the four cases of cylinders and cones, the point and

transfer impedances were determined at the center stiffener and at

a point on the shell midway between the center stiffener and the

adjacent stiffener (Figs. 10 through 17). Si-ce the lower lobar

modes (m - 1, n - 2, 3, 4) are the most effic-ent sound radiators,

the impedances for these modes are most significant. Tables 4 and 5

give the stiffnesses (K w iaZ) and impedances (point and transfer)

for the lower modes for the various cases of cylinders and cones.

Table 6 compares ratios of transfer impedances and shows that the

cones and cylinders react differently to the parameter changes.

The highest increase in the cylinders is derived by increasing

the shell thickness (comparison c & d) whereas the highest increase

in the cone is derived by increasing the frame area (comparison

a & b).

Contrary to the impedance results, the percent changes in frequencies

(stretching and lobar) are not too sensitive to the changes in shell

thickness and frame areas. For each case, there are approximately

25 frequencies below 1 kc(lOcps). The frequencies for the first

four longitudinal modes (m w 1, 2, 3, 4) and first six lobar modes

(n - 2, 3, 4, 5, 6) are shown in Tables 2 and 3. The percent changes

in frequencies are shown in Table 7.
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For both the cylinders and cones, the largest increase in frequencies

for the lowest lobar modes (m w 1, n w 1, 2) can be derived by in-

creasing the shell thickness and decreasing the area of frames

(comparison f of Table 1).

The analyses of the cones also revealed that the lobar mode shapes in

some cases are "mixed" (see figures 6, 7, 8, 9). In some cases the

frames and shells have different mode shapes while in other cases the

shell and frames at one end of the cone have different mode shapes

from that of the shell and frames at the other end.

The percent changes in frequency for the lobar modes (n) decrease

with longitudinal modes (m) for both the cones and cylinders. The

fourth longitudinal mode (m = 4) has the smallest change. Since

the half-wave-length for this mode approximately equals the length

between frames, the shell behaves somewhat as an unstiffened shell and

thus the changes in frequency would expectedly be small.



V

DISCUSSION AND CONCLUSION

For the cases studied, the variations in shell thickness and frame area

have their greatest effects on the transfer impedances. Thus, it is

apparent that the radial velocity of both shell and frames can be

significantly reduced by an expedient choice of frame area and shell

thickness. The effect of frame spacing was not investigated in this

study, but it would also have a significant effect.

Considering the two parameters studied (shell thickness and frame area)

the most efficient way of raising the transfer impedances (thus re-

ducing the radial velocity) in the cylinder is to keep the area of

frames constant while increasing the shell thickness. In the cones,

however, the opposite is true. The most effective means of increasing

the transfer impedances are to keep the shell thickness constant while

increasing the frame area.

Unlike the large variation in impedances, the natural frequencies

(stretching and lobar) do not substantially change for all the cases

of cylinders and cones. The greatest changes are accomplished by

increasing the shell thickness while decreasing the frame area.

One of the most significant results is the fact that in the cones

there exist "mixed" lobar modes. These "mixed" modes start as low

as the fourth mode and take two forms; in some cases the mode shapes

at either end of the cone differ, and in others the shell has one mode

shape while the frames have another. The significance of these

phenomena s that only an analytic method that does not predetermine

a mode shape (such as the lumped mass methods) will determine these modes.

Since the "lumped mass" technique used is valia for any geometry,

symmetrical as well as not, this method can determine these "mixed"

modes with equal facility as well as the regular lobar modes.

16



The results of this study indicate, that expedient sheli designs can, J

significantly reduce the radial velocity of the shells when subjected

to steady state longitudinal driving force.
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TABLE 2

LIST OF FREQUENCIES AND MODE SHAPES (CONE)

Case 1 Case 2 Case 3 Case 4

1/4IL 2x1/2S 1/2 L 2x1/2S 1/41L 2x1s 1/2 F 2xlS

FE FREQ m l FEEQ I FNSQ II (Fcps-) m FpsQ) m n (FcP~s) m n (FsQ n

322 1 2 312 1 2 290 1 2 307 1 2

337 1 3 324 1 3 373 1 3 349 1 3

358 1 4 356 1 4 447 1 4 4101 4

429 1 5/3 424 1 3/5 514 1 3/5 48o 1 3/5

440 1 6/4 442 1 6 530 1 4/6 503 1 6

511 2 3/5 476 2 4 549 2 4 527 2 4

464 2 4 523 2 3/5 549 2 3/5 555 2 3

561 2 3/5 547 2 6 566 2 2 596 2 5/3

528 2 6 576 2 3 598 2 6 606 2 6

588 3 6 635 3 4 607 2 5 613 2 2

605 3 5 644 2 2 622 3 6 661 3 4

599 3 4 647 3 5 639 3 5 679 S

649 2 6/4 654 3 6 640 s 687 3 5

681 S 703 S 650 3 4 697 3 6

669 4 6/2 731 4. 6 676 4 4/6 732 4 6

706 4 5 750 4 3/5 705 3 3/5 754 4 5

761 3 3 801 3 3 728 4 3/5 773 3 5/3

763 4 4 806 4 4 770 4 4 808 4 4

870 5 6 920 3 2 784 3 2 871 3 2

889 5 5 928 5 6 889 5 4 939 5 5

933 4 3 930 5 5 916 5 3/5 942 5 4

971 3 2 976 4 3 988 4 3 968 4 3
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TABLE 3

LIST OF FREQUENCIES AND MODE SHAPES (CYLINDER)

Case 1 Case 2 Case 3 Case 4

1/4 E 2xl/2S 1/2 F 2xl/2S 1/4 M 2xlS 1/2 L 2 x 1S
Srn n g

252 1 3 263 1 3 266 1 3 270 1 3

306 1 2 319 1 2 285 1 2 308 1 2

361 1 4 3401 4 413 1 4 397 1 4

456 1 5 437 1 5 493 2 3 503 1 5

475 2 4 473 1 6 502 2 4 5o6 2 4

486 1 6 474 2 4 515 1 5 538 1 6

518 2 5 517 2 5 543. 1 6 543 2 3

544 2 6 543 2 6 567 2 5 582 2 5

554 2 3 575 2 3 576 2 2 592 2 6

616 S 636 S 583 S 617 S

629 22 655 3 4 586 2 6 630 2 2

635 3 4 661 2 2 613 3 5 665 3 4

646 3 6 662 3 5 633 3 4 686 3 5

649 3 5 663 3 6 666 3 6 689 3 6

711 4 6 744 4 6 668 3 3 731 3 3

720 3 3 764 3 3 709 4 5 747 4 6

736 4 5 766 4 5 715 4 6 768 4 5

793 4 4 818 4 4 767 3 2 821 4 4

837 3 2 880 3 2 793 4 4 839 3 2

890 5 4 921 4 3 835 5 5 923 4 3

905 4 3 940 5 4 863 5 4 923 5 4

920 5 3 896 4 3

926 5 5
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FIGURE 1 MATHEMATICAL MODEL OF STIFFENED SHELL
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A0 ,I x
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(28)
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